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Abstract 

Pop. Size Strata Parameters Sample Observations 
Estimation of the variance of the slope of 

Strata 
the linear regression under a variety of computer 
generated situations with the Balanced Half 1 

Sample procedure is considered. Three estimates 2 

for the population slope ß, each of which is 
optimal for different situations, are presented. 
The method of applying the Balanced Half- Sample 
technique with each of these estimates is 

investigated and then evaluated with a Monte N 

12) (2) 8(2) 
(x11.211) 

(x21.221) (x20.y20) 

Carlo experiment. 

The results of the investigation show that 
variance estimates of the slope are highly 
biased and very unstable unless sizeable numbers 
of observations are selected from each stratum. 
The choice of the best estimator of from 
the three presented depends on the particular 
situation under consideration. 

1. Introduction 

The balanced half -sample (BHS) technique has 
been used for some time to estimate the variance 
of the combined ratio estimate in such large - 

scale sample surveys as the Health Examination 
Survey (HES) and the Health Interview Survey 
(HIS) of the National Center for Health 
Statistics (NCHS). Other large -scale surveys 
have used variance estimation techniques such as 

a Taylor Series expansion or the linearization 
method for the same purpose. Proponents of the 

BHS technique have claimed that an estimate of 
the variance of any non -linear estimate of 
interest could be obtained without having to 

derive new expressions for the approximations 
to the variances as would be the case with the 
linearization method. The properties of the BHS 
technique have been documented by McCarthy (1966, 
1969) and Lemeshow and Epp (1977) and its 
properties for the ratio estimate have been 
presented by Lemeshow and Levy (1977). 

This paper considers the slope of the linear 
regression as a particular non -linear estimate. 
The BHS technique is used to estimate its 
variance in a variety of computer generated 
situations. The ability of this method to 
effectively estimate the variance of the slope 
is carefully considered and evaluated through 
the use of Monte -Carlo experiments. This is done 
in the context of a stratified random sample. 

Specifically, consider a population sub- 
divided into L strata of equal weight. A 
random sample of size n is drawn from each 
stratum and observations denoted (xij,yij), 
i =1,...,L, j =1,...,n are made. The pertinent 

2 population parameters are denoted by ax, 

and The strata 
parameters and observations are illustrated as 
below: 
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2. Estimating 

Let the population slope be defined as 

= axy /62 x (2.1) 

The following three estimates are considered for 
this parameter: 

L n 

(i) E E (xij-x..)(yij-Y.-) 
i=1 j=1 

1 L n( 

E E (xi.-x..)2 
1=1 j=1 

(2.2) 

where the deviations are taken about the overall 
means. 

L 

(ii) [ (xij-xi (2.3) 
1=1 j=1 

2 L n 
E f E (xij-x1..)2] 

i j =1 

where the deviations are taken about the within - 
stratum means. 

L n 
(iii) 

L 
E { (xi -xi.- )(Yij) 

- 
i=1 j=1 j 

E (xij-xi )2} 

j=1 

(2.4) 

which is the average of the strata slopes. 

The following theorem is presented without 
proof: 

Theorem 1: If n observations are randomly 
selected from each of L strata and ß is 

defined as in (2.1), then as 

(i) irrespective of the distribution of x 

or y 

(ii) if u(i) for all i, where 

is any arbitrary constant 



(iii) if p (i) =p and a(1) =a for all 1 
M 

2 1 
M 

3 p x x xx V 
B1 

(ß E -ß) E 

i, where p* and are any abribrary 
1 

=1 
=1 (i) 

X XX 
constants. 

A proof of the theorem is given by Lemeshow 
(1976). 

and 

= ßl defined in 

The choice of the appropriate method of (2.2). 
estimating is not always clear because the 
parameters of the independent variable in each 3.2 Method 2 (deviations computed about within - 
stratum are often unknown. In certain cases the stratum means): 
choice is clear. For instance, if x and y 

are bivariate normal, and if the distribution of Let ß(p) be the pth half -sample estimate 

x is the same in each stratum, then ß3 is the of corresponding to the estimate defined in 
maximum likelihood estimate of and as such (2.3). 
is known to be the minimum variance unbiased 
estimate. If we only have in each L 2 r 

stratum, then both and ß2 are consistent. E E E (x.. -X 
Xi )(Yi w ) 

Consistency is always assured using but 1 =1 j =1 w=1 
clearly, use of this estimate may provide an (p) L 2 r 

unnecessary loss of precision. E E E (x -X.. )2 
i =1 j =1 

13 
w=1 

i3w 13 

3. Estimating the Variance of with 
the BHS Technique where 

r 

In the half -sample method, assume the n xi 
ijw X i w 

observations from each stratum are divided into w =1 
two groups of r =n /2 observations each. Let 
Xijwwth observation in the jth group of - 

E 
stratum i, i= 1,...,L, j= 1,2,w=1,...,r. The Yij. r 

=1 
balanced half -sample method can be used to 
estimate the variance of when 8 is computed 

and is defined as in (3.1). 
using any of the three estimates (2.2), (2.3), 1j 

or (2.4). 
Then, 

3.1 Method 1 (deviations computed about overall M M 
means): 

V (ß )= 1 (6(1)-(3) 2 1 
B1 2 

=1 1=1 (i) 
Let be the pth half -sample 

estimate of corresponding to the estimate and 

defined in (2.2). That is, ) 1 E defined in 
B2 2 

ß(p) L 2 r 3.3 Method 3 (average of the strata slopes): 

E E 6(P) E (x. -X(P))2 

=1 j =1 
i3 

w=1 
ijw 

Let ß(p) be the pth half -sample estimate 
of corresponding to the estimate defined in 
(2.4) . 

E E E (x.. -y(P)) 
j=1 w=1 

(2.3) . 

where 

and 

ij 

X(P) = 
Lr L 

L 2 r Lil 
E E E , 

Lr i=1 j=1 

1 if the jth group of ith stratum is 

in the pth half -sample 
(3.1) 

0 if the jth group of ith stratum is 

not in the pth half -sample 

where 

Then, letting M = total number of half - 
samples computed, and 
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E (X - 
J=1 k=1 ijw 13w 

E (x 
i w xij.)2 

1=1 j k=1 

are defined as before. 

Then, 

M 
= (ß(i)- ß)2 = ß(i) 

i=1 



M 

V82(ß3) M 
E 

(ß(i) 3)2 , 

defined in 
i =1 

(2.4). 

4. The Sampling Experiment 

The sampling experiment consists of randomly 
selecting n observations for each of L strata 
of infinite size whose parameters are precisely 
specified. On the j -th draw from the i -th 
stratum the random pair (xij,yij) is observed 
where 

1 

a(i) 

axy 

Although in this experiment, the parameters are 
known, estimates of them are obtained. The 
process was then repeated K times and the 
distribution of the estimates of were 
studied. 

The strata correlations, p(i) are set 
equal to .9 for all strata and values are. 
specified for and 
a(1)= (i)- B fixing these parameters, 
the values of 4i), and are deter- 
mined. 

A variety of "situations," covering a range 
of parameters, were considered. These can be 
summarized as follows: 

Situation (i) L-3, nß0, K -1200: 

(111)42;3)) 

Situation (i -1) (5,5,5) 
Situation (i -2) (5,5,5) 
Situation (i -3) (5,5,5) 
Situation (i -4) (5,5,5) 

Situation (i -5) (5,5,5) 
Situation (i -6) (5,5,5) 
Situation (i -7) (5,5,5) 

Situation (i -S) (5,5,5) 
Situation (i -9) (5,10,15) 
Situation (i -10) (5,10,15) 
Situation (i -11) (5,10,15) 
Situation (1 -12) (5,10,15) 

(8(1)5(2)8(3)) 

(1,1,1) 

(1,2,3) 

(1,1,1) 

(1,2,3) 

(1,1,1) 

(1,2,3) 

(1,1,1) 

(1,2,3) 

(1,1,1) 
(1,2,3) 

(1,1,1) 

(1,2,3) 

(1,1,1) 

(1,1,1) 

(1,1,1) 

(1,1,1) 

(1,2,3) 

(1,2,3) 
(1,2,3) 

(1,2,3) 

(3,6,9) 

(3,6,9) 
(3,6,9) 

(3,6,9) 

(0,0,0) 

(0,0,0) 

(0,1,2) 

(0,1,2) 

(0,0,0) 

(0,0,0) 

(0,1,2) 

(0,1,2) 

(0,0,0) 

(0,0,0) 
(0,1,2) 

(0,1,2) 

Situation (ii) L-3, n-2, repeated for all 12 sets of parameters as in 
Situation (1) 

Situation (iii) L-3, n -4, 

Situation (1v) L -3, n -8, 

Situ/it/at (v) -3, n -12, 

Situation (vi) L -3, n -16, 

Situation (v1i) L-3, n -100, " 

Situations (ví11 -1)- (viii -12) correspond, for L -4 strata, to the situations 
described in Situations (i- 1)- (i -12). 

Situations (ix- 1)- (ix -12) correspond, for L -15 strata, to the situations 
described in Situations (1- 1)- (i -12). 

The method used for generating the random 
pair (xi ,yij) is not described in detail here. 
All normal deviates were independently generated 
by the method of Marsaglia (1973). 

The validity of the sampling experiments 
were checked in a variety of ways. These are 
described by Lemeshow (1976). There was close 
agreement between theoretical and simulated re- 
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sults providing reassuring evidence that the 
simulations reported here operated correctly. 

5. Results 

To assess the relative advantages of the 
different estimates of defined in (2.2), 
(2.3) and (2.4), it is necessary to compute the 
population value of ß in each of the sampling 
situations under consideration. This value, in 

terms of the parameters fixed in each stratum, 
is as follows: 

((i) 
) 

i=1 i=1 

(5.1) 

The discussion here is restricted to the 
situations with L =3. Situations (i- ) (i -4) 

correspond to having pi) and a(1) 
i= 1,...,L. From Theorem 1 we expect all three 
estimates of to be consistent and, since 
sampling is from bivariate normal populations, 
ß3 should be the minimum variance unbiased) 
estimate. Situations (i- 5) -(i -8) have 
i= 1,...,L. From Theorem 1, only and 2 

will be consistent estimates of the population ß. 
Situations (i- 9)- (i -12) correspond to all strata 
having different means and variances. From 
Theorem 1, only should be consistent for 

Values of 82 and were calculated 
for each of the, twelve situations (i- 1)- (i -12). 

The means, and variances, 
i= 1,2,3, from the 1200 repetitions were computed. 
Table 1 presents these results along with the 
value of computed using (5.1). 

It is clear that these results agree with 
the conclusions Qf Theorem 1. In Situations 
(i- 1)- (i -4), i= 1,2,3. That is, each 
of the appears to be an unbiased estimate 
of O. In addition, except in the rather 
uninteresting Situation (i -1) in which all strata 
are identical, has larger variances than 
R2 or ß3. In Situations (i -2) and 0i -4) where 
each stratum has a different slope, $3 has the 
minimum variance of the unbiased estimates. In 

Situations (i- 5)- (i -8), and 132 are 

consistent by,LTheorem 1 and, in the sampling 
experiment, i =1,2. However, in 

Situations (i -6) and (i -8) n which the strata 
Vlopes are not all eq E(ß3) #8. Note that 
(ß2) never exceeds V(ß1). In Situations (i -9)- 

(i-12), appears unbiased and hae smaller 
variance than the others. 82 and are 

biased whenever the strata have different linear 
regressions. 

The conslusions of Theorem 1 and this 
sampling experiment is that if an estimate of the 

population ß is desired, is consistent and 
asymptotically unbiased. The variance of is 

generally larger than the variances of the 
alternative estimates. If it can be assumed that 

the strata have the same mean for the independent 
variable, then, in th? sampling experiment, ß2 



is a better estimate of than since it 

is also unbiased but much less variable. Use of 
is not recommended since the necessary 

assumptions may be too restrictive. 

Note that is estimated by computing 
deviations about some mean.,, When this mean is 
a within -group mean as in ß2 or at least 
two observations are needed in each of the 2 

groups which were established for use with the 
balanced half -sample method. Moreover, it is of 

interest to determine the minimum number of 
observations per stratum necessary to introduce 
some degree of stability into the variance 
estimation calculations. 

As described earlier, the sampling experi- 
ment was repeated for the L =3 strata situations, 
with n =4, 8, 12, 16, 20 or 100 observations per 
stratum. By taking at least n =4 observations 
per stratum, we are assured of having at least 
2 observations in each of the established groups. 

Table 2 presented the absolute relative 
bias and variance of the two estimates of V($i), 
í= 1,2,3, in Situation (i -2), (iii -2), (iv -2), 
(v -2), (vi -2) and (vii -2). That is, we present 
the results for those situations in which the 
means and variances of the independent variable 
are the same for each of the L =3 strata but, 
while the intercepts are the same, the slopes 
differ for the linear regressions in each 
stratum. 

In Table 2 we see that selecting small 
samples from each stratum can result in estimates 
of extremely low prevision and high variability. 
For instance, when was used to estimate 
with n =4 observations p r stratum, the balanced 
half -sample estimate of V(ß1) missed this 
target variance by 93%. The variance of these 
estimates were quite high. Using an absolute 
relative bias of .05 as an acceptable level of 
precision, we observe that, when using to 

estimate $, more than 100 observations per 
stratum were needed. When using $2 as an 
estimate of $, at least 20 observations should 
be used. About 100 observations áhould be used 
for the variance estimates when is used to 
estimate $. As a general rule, at least n =20 
observations from each stratum are needed in 
order to introduce stability into the variance 
estimates. When using $3, variance estimates 
show greater sensitivity to small n, and a 
larger n should be selected if possible. All 
twelve parameterizations were studied in the same 
way with similar results. 

A study of the other situations indicates 
that contrary to the results of the linear case 
(Lemeshow and Epp (1977)) and the combined ratio 

estimates (Lemeshow and Levy (1977)), the two 

half -sample estimates of the variance of 
differed. In the "balanced" situation (i.e., 
L =3), neither one of variance estimates was 
consistantly better or worse than the other over 
all situations considered. 

In the "full -m tix" situ tion (i.e., L =4) 
it was noted that i= 1,2,3. 
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In fact, ©B1(ßi) always had a negative bias. 
However, the variance and mean square error using 
this balanced half -sample estimate were never 
greater that the corresponding measurement for 

VB2(ßi). This corresponds to results for linear 
and combined ratio estimates presented in the 
references cited above. When L =15 strata were 
used, the results described above for L =3 appear 
to apply. 

6. Conclusions 

The sampling experiments have demonstrated 
that each of the variance estimation techniques 
appear to have the potential of providing usable 
estimates of the target variance for the slope 

provided a large enough sample is selected from 

each stratum. This is very different than 
previous results for using the balanced half - 
sample method in the linear case or with the 
combined ratio estimate. There, even as few as 

two observations per stratum would result in 
minimal bias. Here, however, at least 20 obser- 

vations per stratum are necessary in order to 
introduce some stability into the variance 
estimation process for the slope of the linear 
regression. 
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Table 1: Population for eakh of the twelve situations with L =3 strata 
described in means, E(ßi), and variances, V(ßi), of ßi, 1,2,3, 
as estimated from the sampling experiment are presented. 

Situation Pop 

Means Variances 

É(ß1) É(ß2) g(03) (ßl) V02) V(ß3) 

(i- 1) 1.00000 1.00078 1.00034 1.00027 .00410 .00425 .00459 
(i- 2) 2.00000 2.00553 2.00030 2.00095 .33297 .04640 .02094 
(i- 3) 1.00000 1.00092 .99994 1.00073 .01523 .00417 .00453 
(i- 4) 2.00000 2.01199 1.99562 2.00025 .50021 .04376 .02234 

(i- 5) 1.00000 1.00016 .99926 1.00062 .00457 .00476 .00424 
(i- 6) 2.33333 2.34308 2.32874 1.99972 .18958 .05090 .02015 
(i- 7) 1.00000 .99703 .99811 .99680 .01089 .00503 .00477 
(i- 8) 2.33333 2.30799 2.31779 1.99410 .27262 .05287 .02220 

(i- 9) 1.00000 .99936 1.00159 1.00132 .00110 .00479 .00430 
(1-10) 3.55882 3.56746 2.32645 2.00300 .01732 .05320 .02076 

(i -11) 1.14706 1.14880 1.00009 1.00123 .00122 .00490 .00447 
(i -12) 3.70588 3.72134 2.32342 2.00092 .01911 .04999 .02025 



Table 2: Results of sampling experiment in which n =4, 8, 12, 16, 20 or 

100 observations were selected from each of L =3 strata. 
Estimated values based on the sampling experiment are presented 
for absolute relative bias, and variance u ing the three thods 

of estimation. In all cases 41) =5, ) =1, =0, p(1) =.9, 

i= 1,2,3. 6(1) =1, 8(2) =2, 

Method 1 

n 

Absolute Relative Bias (I) Variance (I) 

B1 B2 Bl B2 

4 .93 1.11 35.04468 51.53947 

8 .34 .38 1.85307 1.99540 

12 .24 .27 .54089 .58215 

16 .13 .15 .26443 .27707 

20 .10 .12 .14486 .14973 
100 .07 .08 .00460 .00462 

Method 2 

n 

Absolute Relative Bias (I) Variance (I) 

B1 B2 B1 B2 

4 1.99 3.15 3.09580 5.48564 
8 .20 .42 .02398 .02919 

12 .16 .31 .00537 .00626 

16 .01 .11 .00308 .00349 
20 .01 .06 .00185 .00197 

100 .02 .04 .00005 .00005 

Method 3 

n 

Absolute Relative Bias (I) Variance (I) 

B1 B2 B2 

4 * * ** ** 

8 1.53 2.87 .28248 .84464 
12 .49 .92 .00540 .00979 
16 .23 .51 .00201 .00323 
20 .25 .49 .00083 .00123 
100 .03 .06 .00001 .00001 

*Absolute relative bias >100 * *Variance >100 
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